2025-2026 Undergraduate Academic Catalog

EGME-4250 Propulsion–Fa 3 hours This course introduces each type of propulsion system that is commonly used in modern aerospace vehicles; e.g., rockets, piston aero engines, gas turbine engines, ramjets, and scramjets. This course presents a balance of theory, fundamental performance analysis, and design. Engineering principles and functionality mechanisms are used in assignments, including a group design project, requiring students to analyze the performance of each type of these propulsion systems. Prerequisites: EGME-3110 Thermodynamics; EGME-3210 Fluid Mechanics. (odd years) EGME-4270 Compressible Fluid Flow–Fa 3 hours Introduction to the compressible flow of gases in engineering systems; isentropic flow in variable-area passages, shock and expansion waves; and flow with wall friction and heat transfer. Prerequisites: EGME-2050 Computational Methods; EGME-3110 Thermodynamics; EGME-3210 Fluid Mechanics. (even years) EGME-4410 3 hours Introduction to Fracture Mechanics–Sp Introduction to failure modes caused by static and dynamic loading, brittle fracture criteria, elastic behavior, stress fields around cracks, fatigue failure, stress corrosion cracking, and strain hardening mechanisms. Prerequisite: EGME-2410 Properties of Engineering Materials. EGME-4530 Advanced Mechanics of Materials–Fa 3 hours Advanced treatment of stress and strain including coordinate transformations, the eigenvalue problem, Mohr’s circle and linear constitutive equations. Failure theories and energy methods, including Castigliano’s theorems, are studied; applications to classical topics including analysis of beams with non-symmetrical sections, non-circular torsion, thin-wall beams, and beams on elastic foundations. Prerequisite: EGME-2530 Statics and Mechanics of Materials or EGGN-2520 Mechanics of Materials. (odd years) EGME-4550 Continuum Mechanics–Fa 3 hours Continuum Mechanics is a discipline of physics that deals with both solid and fluid continuous matter. This course establishes the fundamental mechanical and kinematic equations that are valid for all continuous media using the laws of physics including the conservation of mass, momentum and energy and the concepts of stress and kinematics of deformation. Constitutive equations which describe the behavior of specific idealized materials (e.g. perfectly elastic solid, viscous fluid) are also developed. Topics include: continuum assumptions, essential mathematics, stress principles, kinematics of deformation and motion, balance laws and constitutive theory. Prerequisites: EGME-2410 Properties of Engineering Materials; PHYS-2120 General Physics II; MATHDifferential Equations. (even years) EGME-4560 Biomechanics and Biomaterials–Sp 3 hours Introduction to biomechanics of the human body, reactions of biological tissue and synthetic materials to load, and the biomechanics of biomaterials. Advanced mechanical analysis of rigid and deformable bodies and fluid mechanics applied to bone, muscle, connective tissue and blood. This course will provide foundational knowledge to the engineering student for occupations in medical device manufacturing, health and sport sciences industries, and advanced fields of study. Prerequisites: EGME2410 Properties of Engineering Materials; PHYS-2120 General Physics II and MATH-2740 Differential Equations. (odd years) EGME-4610 Dynamics of Machines–Fa 3 hours Dynamic analysis of machines and mechanisms; Newton’s laws of motion, energy methods, force analysis, shaking forces, static and dynamic balancing, engine dynamics, multi-cylinder engines, and cam dynamics. Prerequisite: EGME-3610 Kinematics and Design of Machines. EGME-3850 Mechanical Design–Sp 3 hours Further development of load determination, stress, strain, deflection and failure theories; integration of an iterative problem solver in the design process; and analysis of fatigue failure. Introduction to the design of mechanical components including shafts, keys, couplings, bearings, gears, springs, and fasteners. Prerequisite: EGME-2410 Properties of Engineering Materials. Corequisites: EGME-3020 Mechanical Engineering Laboratory II; EGME-3610 Kinematics and Design of Machines. (Fee: $25) EGME-3920 Mechanical Engineering Internship 1–3 hours An opportunity for a mechanical engineering student to work closely with an industrial advisor. Specific attention is given to solving a particular problem(s) in that industry or firm. A faculty advisor assists in supervising and approving the internship, including assessing the number of credit hours. A final report (approximately seven pages per credit hour) describing the experience, including the problem and solution, is required. Must be arranged with faculty sponsor and work supervisor before starting and cannot be used to satisfy elective credit requirements. Prerequisites: Junior or Senior engineering major status; faculty advisor’s permission. EGME-3950 1–3 hours Topics in Mechanical Engineering–Fa, Sp Selected topics in mechanical engineering at the 3000-level that will compliment or extend present 2000- or 3000-level courses or expose students to topics not taught in other courses; may be proposed by the engineering faculty or students. Prerequisite: Instructor’s permission. EGME-3980 1–3 hours Independent Study in Mechanical Engineering Opportunity to perform independent study or research in the various branches of engineering and allied fields of application. A formal proposal for study must be approved by the faculty advisor before registering for this course. Up to three credit hours of engineering electives can be satisfied by an equivalent number of hours of independent study. Prerequisites: Junior or Senior engineering major status; faculty advisor’s permission. EGME-3990 1–3 hours Project Design in Mechanical Engineering An elective course for students to get academic credit for extracurricular design work in mechanical engineering; project may be related to a design competition, ministry, industry, or personal interest. Cannot be used to satisfy engineering elective requirements. Prerequisite: Instructor’s permission. EGME-4060 3 hours Computational Fluid Dynamics–Sp Finite difference and finite volume methods. Numerical methods and their consistency, accuracy, stability, boundedness, and efficiency. Navier-Stokes equation solution methods. Intelligent use of commercial grid-generation and CFD software to solve practical engineering fluid flow problems. Prerequisites: EGME-2050 Computational Methods; EGME-3210 Fluid Mechanics. (Fee: $50) EGME-4160 Radiation and Solar Energy–Fa 2 hours Introduction to the fundamentals of radiation heat transfer including shape factors, wave-length dependence, and material properties. Applications to solar energy engineering and design problems. Prerequisite: EGME-3150 Heat Transfer. EGME-4210 Aerodynamics–Sp 2 hours Introduction to Aerodynamics. Topics include potential flow, Kutta-Joukowski theorem, wing theory, panel method, lifting line theory, slender wing and slender body theories, laminar and turbulent boundary layers. Prerequisite: EGME-3210 Fluid Mechanics. (odd years) Page 258 2025–26 Undergraduate Academic Catalog Course Descriptions EGME-3850 – EGME-4610

RkJQdWJsaXNoZXIy MTM4ODY=