APPENDIX C – ACCELERATED NUCLEAR DECAY HEAT SUFFICIENT TO CAUSE MARE IMBRIUM 1. Heat Calculations Decay of naturally occurring radioisotopes Mare Imbrium Value Unit Crater surface area 1.0297E+06 km^2 maria depth 1.3000E+00 km maria density 2.7000E+12 kg/km^3 maria mass 3.6142E+18 kg Nuclide Half-life (yr) Concentration Present Mass Original Mass Energy (J/kg) Total energy (J) 235U 7.04E+08 2.16E-08 7.81E+10 6.56E+12 1.90E+13 1.23E+26 238U 4.47E+09 2.98E-06 1.08E+13 2.16E+13 2.11E+13 2.29E+26 232Th 1.41E+10 9.60E-06 3.47E+13 4.33E+13 1.77E+13 1.53E+26 40K 1.25E+09 3.00E-06 1.08E+13 1.32E+14 3.21E+12 3.89E+26 Total 8.94E+26 Crater Diameter (m) Est. Formation Energy (J) 3rd order polynomial Power 1 Power 2 3800 2.5E+18 -2.4E+20 1.1E+18 9.8E+17 12000 1.6E+19 3.6E+20 4.5E+19 4.6E+19 23000 3.1E+20 4.9E+20 3.7E+20 4.1E+20 32000 1.0E+21 6.5E+20 1.1E+21 1.2E+21 70000 1.5E+22 1.5E+22 1.4E+22 1.7E+22 140000 2.1E+23 2.0E+23 1.3E+23 1.7E+23 Imbrium: 1146000 1.7E+26 1.7E+26 1.2E+26 2.0E+26 2. Crater Size v. Energy y = 2E+06x3.2496 R² = 0.9989 0.0E+00 5.0E+22 1.0E+23 1.5E+23 2.0E+23 2.5E+23 0 20000 40000 60000 80000 100000 120000 140000 160000 Chart Title PAGE SUMMARY: Crater size v crater energy 3 different Energy Estimates for Mare Imbrium Explosion, using 3 different extrapolations STERNBERG Craters and cracks 2023 ICC 65
RkJQdWJsaXNoZXIy MTM4ODY=